

W07E

Appendix |l

List of SAL Keywords by Chapter
Chapter 4 Keywords

SELECT, AS, FROM, ORDER BY, ASC, DESC, LIMIT

/*

This is a block comment. Block comments start with a forward slash followed
by the asterisk, then end with an asterisk and another forward slash. Block
comments should usually follow this format:

CREATED BY: <your name>

CREATED ON: <date>

DESCRIPTION: <Brief description of what your query does>
*/

-- This is an example of using a single-line comment:

SELECT -- Specifies what data or fields to retrieve from the database
FirstName AS 'First Name', - These are field names
LastName AS [Last Name], - The AS keyword renames the field

Company AS Co - One-word aliases do not need single quotes or parentheses

FROM -- Specifies the table containing the desired data
customers - Refers to the customers table

ORDER BY -- Specifies the output order; ascending (A-Z) is the default
FirstName DESC - Typing DESC specifies descending (Z-A) order

LIMIT -- Limits results to a specific number
10; - The semicolon is optional here

Chapter 5 Keywords

WHERE, CASE, WHEN, THEN, ELSE, END AS, DATE ()

Operators in SQL are used within SQL clauses.

Appendix ll: List of SQL Keywords by Chapter

203

TYPES OF OPERATORS

COMPARISON LOGICAL ARITHMETIC
= Equal To BETWEEN + Add
> Greater Than N - Subtract
Less Th DR / Divid
< Less an wviae
fig. 145 AND
>= Greater Than or Equal To OR * Multiply
= Less Than or Equal To % Modulo
<> Not Equal To
SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total
FROM
invoices
WHERE
Total = 1.98 -- Only returns records where the field Total is equal to 1.98
ORDER BY
InvoiceDate

CASE - This statement allows you to filter records by user-specified condi...

WHEN -- Used with a case statement to specify a condition
THEN -- Used with a case statement after WHEN to create a label for all...
ELSE -- Used to specify every condition not covered by the WHEN/THEN...
END AS -- Creates a new field for the labels created by the ELSE state...
SELECT
InvoiceDate,
BillingAddress,
BillingCity,
Total,
CASE -- Creates four conditions to display different price ranges for the...
WHEN TOTAL < 2.00 THEN 'Baseline Purchase' - Condition 1

WHEN TOTAL BETWEEN 2.00 AND 6.99 THEN 'Low Purchase'
WHEN TOTAL BETWEEN 7.00 AND 15.00 THEN 'Target Purchase'
ELSE 'Top Performers' -- The ELSE keyword handles all other conditions not...
END AS PurchaseType
FROM
invoices
ORDER BY
BillingCity

The single-line comments are abbreviated in the previous
example for the sake of print. Single-line comments must always
be on one line in the SQL browser or they will be mistaken for
code and will result in errors.

204 SQL QUICKSTART GUIDE

P InvoiceDate BillingAddress BillingCity Total PurchaseType
(‘)?‘A H/C‘ 1 2009-05-10 00:00:00 | Lijnbaansgracht 120bg Amsterdam 891 Target Purchase
2 2010-12-15 00:00:00 Lijnbaansgracht 120bg Amsterdam 198 Baseline Purchase
3 2011-03-19 00:00:00 Lijnbaansgracht 120bg Amsterdam 396 Low Purchase
fig. 146
71 2010-03-21 00:00:00 | 162 E Superior Street Chicago 15.86 Top Performers
W0T7¢
DATE () is the first function introduced in the book. It is introduced
early so it can be used with the other keywords in chapter 5. More
functions are introduced in chapter 7.
/*
The DATE() function removes any time code information
from data stored as DATETIME.
*/
SELECT
InvoiceDate,
DATE(InvoiceDate) AS [Results of DATE Function]
FROM
invoices
ORDER BY
InvoiceDate
InvoiceDate Results of DATE Function
AP 1 2009-01-01 00:00:00 2009-01-01
Q’“ /0 2 2009-01-02 00:00:00 2009-01-02
3 2009-01-03 00:00:00 2009-01-03
4 2009-01-06 00:00:00 2009-01-06
fig. 147 5 2009-01-11 00:00:00 2009-01-11

Appendix ll: List of SQL Keywords by Chapter 205

Chapter 6 Keywords

INNER JOIN, ON, LEFT OUTER JOIN, RIGHT OUTER JOIN,
IS, NOT

The RIGHT JOIN is not supported in SQLite but is supported in
other RDBMS implementations.

INNER JOIN

SELECT
i.Invoiceld, -- Alias notation specifies what table the field is from
.CustomerlId,
.Name,
.Address,
.InvoiceDate,
.BillingAddress,
.Total

BB Q QoQ

FROM
invoices AS i
INNER JOIN
customers AS c
ON i.CustomerId = c.CustomerId

LEFT OUTER JOIN

SELECT

i.Invoiceld,
.CustomerId,
.Name,
.Address,
.InvoiceDate,
.BillingAddress,
.Total

BeEP-Q QQ

FROM
invoices AS i
LEFT OUTER JOIN
customers AS c
ON
i.CustomerId = c.CustomerId

206 SQL QUICKSTART GUIDE

RAPH/

fig. 148

RIGHT OUTER JOIN (Not Supported in SQLite)

SELECT

i.Invoiceld,
.CustomerId,
.Name,
.Address,
.InvoiceDate,
.BillingAddress,
.Total

bR P Q Q0

FROM
invoices AS 1

RIGHT OUTER JOIN -- Switch position of tables listed in query to create L...

customers AS c

ON i.CustomerId = c.CustomerId

SELECT

ar.ArtistId AS [ArtistId From Artists Table],
al.ArtistId AS [ArtistId From Albums Table],

ar.Name AS [Artist Name],

al.Title AS [Album]
FROM
artists AS ar
LEFT OUTER JOIN
albums AS al
ON

ar.ArtistId = al.ArtistId

WHERE

al.ArtistId IS NULL - Can also use IS NOT

Chapter 7 Keywords

GROUP BY, HAVING

TYPES OF FUNCTIONS

Appendix ll: List of SQL Keywords by Chapter

STRING DATE AGGREGATE
INSTR() DATE () AVG ()
LENGTH () DATETIME () COUNT ()
LOWER () JULIANDAY () MAX ()
LTRIM () STREFTIME () MIN ()
REPLACE () TIME () SUM ()
RTRIM () 'NOwW'

SUBSTR ()
TRIM() «— || (double pipes concatenation)
UPPER ()

Miscellaneous Functions: Round ()

207

Wo7E
As stated in the chapter, there are many more functions recognized
by SQLite than are included in this chapter. For a full list and further
documentation on SQLite, visit https://www.sqlite.org/lang_corefunc.html

Chapter 8 Keywords

DISTINCT
'The basic subquery:
1 SELECT —
2 InvoiceDate,
3 BillingRddress,
4 BillingCity,
5 Total — OUTER QUERY
[FROM
7 invoices
g WHERE Total <
9 {select —
10 T avg (Total) 'nner q or
. 11 from 1 uery
flg' 149 12 invoices)
13 ORDER BY

14 Total DESC]_ OUTER QUERY

— The DISTINCT clause:
! SELECT
2 DISTINCT TrackId
3 FROM
4 invoice items
: ORDER BY
5 TrackId
7
) 8
fig. 150 5
10
11
12
1984 rows returned
in11ms

208 SQL QUICKSTART GUIDE

Chapter 9 Keywords

CREATE VIEW, DROP VIEW

CREATE VIEW V_ ViewName AS [Alias Name]

DROP VIEW V_ViewName

Chapter 10 Keywords

INSERT INTO, UPDATE, SET, DELETE

Data manipulation language (DML) can permanently alter a
database. It is best to practice these commands in a sandbox
space such as the sample database provided. Using DML on a
live database with active customer data can have permanent
deleterious effects.

INSERT INTO
artists (Name)
VALUES (‘Bob Marley’)

UPDATE
employees
SET PostalCode = ‘11202’
WHERE
Employeeld

Il
Ne

DELETE FROM
employees

WHERE
Employeeld =

I
Ne

Appendix ll: List of SQL Keywords by Chapter

209

