

203Appendix II: List of SQL Keywords by Chapter

Appendix II
List of SQL Keywords by Chapter

Chapter 4 Keywords

SELECT, AS, FROM, ORDER BY, ASC, DESC, LIMIT

Chapter 5 Keywords

WHERE, CASE, WHEN, THEN, ELSE, END AS, DATE()

Operators in SQL are used within SQL clauses.	

204 SQL QUICKSTART GUIDE

The single-line comments are abbreviated in the previous
example for the sake of print. Single-line comments must always
be on one line in the SQL browser or they will be mistaken for
code and will result in errors.

fig. 145

205Appendix II: List of SQL Keywords by Chapter

DATE() is the first function introduced in the book. It is introduced
early so it can be used with the other keywords in chapter 5. More
functions are introduced in chapter 7.

/*
The DATE() function removes any time code information
from data stored as DATETIME.
*/
SELECT
	 InvoiceDate,
	 DATE(InvoiceDate) AS [Results of DATE Function]
FROM
	 invoices
ORDER BY
	 InvoiceDate

fig. 146

fig. 147

206 SQL QUICKSTART GUIDE

Chapter 6 Keywords

INNER JOIN, ON, LEFT OUTER JOIN, RIGHT OUTER JOIN,
IS, NOT

LEFT OUTER JOIN

INNER JOIN

The RIGHT JOIN is not supported in SQLite but is supported in
other RDBMS implementations.

207Appendix II: List of SQL Keywords by Chapter

RIGHT OUTER JOIN (Not Supported in SQLite)

Chapter 7 Keywords

GROUP BY, HAVING

Miscellaneous Functions: Round()

fig. 148

208 SQL QUICKSTART GUIDE

As stated in the chapter, there are many more functions recognized
by SQLite than are included in this chapter. For a full list and further
documentation on SQLite, visit https://www.sqlite.org/lang_corefunc.html

Chapter 8 Keywords

DISTINCT

The basic subquery:

The DISTINCT clause:

SELECT
	 DISTINCT TrackId
FROM
	 invoice_items
ORDER BY
	 TrackId

fig. 150

fig. 149

209Appendix II: List of SQL Keywords by Chapter

Chapter 9 Keywords

CREATE VIEW, DROP VIEW

CREATE VIEW V_ViewName AS [Alias Name]

DROP VIEW V_ViewName

Chapter 10 Keywords

INSERT INTO, UPDATE, SET, DELETE

Data manipulation language (DML) can permanently alter a
database. It is best to practice these commands in a sandbox
space such as the sample database provided. Using DML on a
live database with active customer data can have permanent
deleterious effects.

INSERT INTO
artists (Name)
VALUES (‘Bob Marley’)

UPDATE
employees
SET PostalCode = ‘11202’
WHERE
	 EmployeeId = 9

DELETE FROM
	 employees
WHERE
	 EmployeeId = 9

