

183Appendix I: Data Analysis Checkpoint Questions and Solutions

Appendix I
Data Analysis Checkpoint Questions and Solutions

Chapter 3 Data Analysis Checkpoint
Using the Database Structure tab and the Browse Data tab, try to answer the
following questions:

Question 1: How many tables are in our database?

Solution: Looking at the Database Structure tab in DB Browser, the number
of tables is calculated for us and presented in parentheses (). There are
thirteen tables in this database.

Question 2: How many columns does the table named tracks have?

Solution: For any of the tables listed, we can click on the small right-facing
triangle to see the columns for that table.

In this example, we observe that the table called tracks has nine columns.

fig. 129

fig. 130

184 SQL QUICKSTART GUIDE

Question 3: What are some of the data types in this table?

Solution: If we look at the image from the previous question, we can see
that the TrackId column accepts data of the type INTEGER and the Name
column accepts data of the type NVARCHAR. The rest of the columns are also
INTEGER and NVARCHAR except for UnitPrice, which is a NUMERIC
data type.

Question 4: What fields are contained in the tracks table?

Solution: Now we can swap to the Browse Data tab and actually look at the
table. We need to make sure to select the tracks table in the drop-down menu.
Looking at the data in the table shows us why an INTEGER data type is used
for columns like TrackId and AlbumId, while a character data type makes
more sense for the Name and Composer columns. Finally, for UnitPrice,
we needed something with decimals, so the integer data type wouldn’t have
been sufficient for this column.

Chapter 4 Data Analysis Checkpoint

Question 1: How many customers’ last names begin with B?

Solution: In order to answer this question, we can first write a query to display
the specific information we are looking for. In this case, we are interested in
last names. Last names are contained in the customers table under the field
name LastName.

If we simply want a query to display all the last names, we can do this:

SELECT
	 LastName
FROM
	 customers

fig. 131

185Appendix I: Data Analysis Checkpoint Questions and Solutions

That will give us a field of all the last names, but they aren’t in any particular
order. To alphabetize them we can use the ORDER BY statement. Note that
we don’t have to specify A-Z because ascending order is returned by default.
If we were looking for names starting with Z, we might have included the
DESC statement.

SELECT
	 LastName
FROM
	 customers
ORDER BY
LastName ASC

Now our results are alphabetized and we can easily see that four of the entries
start with B. Note that we are still using observation to determine how many
entries start with B. Other ways to do this will be explored further on.

Question 2: When sorted in descending order, which company appears at the
top, in the customers table?

Solution: This time we are looking for the Company field instead of the
LastName field. As mentioned in the last question, all we have to do is
change the last part of our query to specify descending order.

SELECT
	 Company
FROM
	 customers
ORDER BY
	 Company DESC

fig. 132

186 SQL QUICKSTART GUIDE

Doing this yields the following result:

Again, we can observe that Woodstock Discos is the first company listed in
descending order.

Question 3: How many customers do not have a postal code listed?

Solution: We could answer this question by scrolling through the data on
Browse Data, but there is a better way. Using a SELECT statement, we can list
all the data in ascending order as we have done previously. But this time, we
want to list more than just one column, so we can see what customer names
have no postal code data. So we can choose FirstName, LastName, and
PostalCode, then order the results by PostalCode.

SELECT
	 FirstName,
	 LastName,
	 PostalCode
FROM
 customers
ORDER BY
	 PostalCode

This shows us four entries that do not have postal data, as designated by the
null value in the PostalCode column (Figure 134).

fig. 133

187Appendix I: Data Analysis Checkpoint Questions and Solutions

If we were to list these in descending order, we would have to
scroll to the bottom to see the null values.

Chapter 5 Data Analysis Checkpoint

Question 1: Create a query for the invoices table that includes a CASE
statement that labels all sales from billing country USA as “Domestic Sales”
and all other sales as “Foreign Sales.” Label your new field as SalesType
after your END AS statement.

Solution: To display this information, we combine what we learned about
filtering records by text with our CASE statement. Since we are categorizing
our CASE statement by billing country, we will have to include that field in
our SELECT statement.

SELECT
	 InvoiceDate,
	 BillingAddress,
	 BillingCity,
	 BillingCountry,
	 Total,
	 CASE
	 WHEN BillingCountry = 'USA' THEN 'Domestic Sales'
	 ELSE 'Foreign Sales'
	 END AS SalesType
FROM
	 invoices

fig. 134

188 SQL QUICKSTART GUIDE

Question 2: Order this data by the new field SalesType.

Solution: To show all domestic sales in one group and all foreign sales in
another group, we simply add an ORDER BY (using our new field) to our
existing query:

SELECT
	 InvoiceDate,
	 BillingAddress,
	 BillingCity,
	 BillingCountry,
	 Total,
	 CASE
	 WHEN BillingCountry = 'USA' THEN 'Domestic Sales'
	 ELSE 'Foreign Sales'
	 END AS SalesType
FROM
	 invoices
ORDER BY
	 SalesType

Figure 136 shows the results for this query.

fig. 135

189Appendix I: Data Analysis Checkpoint Questions and Solutions

Question 3: How many invoices from Domestic Sales were over $15?

Solution: We can use the same query again, but this time add a WHERE clause
and AND to include both the numeric and text parameters.

SELECT
	 InvoiceDate,
	 BillingAddress,
	 BillingCity,
	 BillingCountry,
	 Total,
	 CASE
	 WHEN BillingCountry = 'USA' THEN 'Domestic Sales'
	 ELSE 'ForeignSales'
	 END AS SalesType
FROM
	 invoices
Where
	 SalesType = "Domestic Sales" AND Total > 15

fig. 136

fig. 137

190 SQL QUICKSTART GUIDE

Chapter 6 Data Analysis Checkpoint

Question 1: Using DB Browser and the Browse Data tab or the entity
relationship diagram on page 95, view the tracks table. Identify which fields
in that table are foreign keys in another table. Based on the foreign keys you
have identified, which tables are related to the tracks table?

Solution: Looking at the tracks table, we see three fields with integer values
that appear to be foreign keys.

The fields AlbumId, MediaTypeId, and GenreId correspond to the
albums, media_types, and genres tables, respectively.

Question 2: Create an inner join between the albums and tracks tables and
display the album names and track names in a single result set.

Solution:

SELECT
a.title,
	 t.Name	
FROM
	 albums a
INNER JOIN
	 tracks t
ON	
a.AlbumId = t.TrackId

Question 3: Using the genres table identified in question 1, create a third
inner join to join to this table and include the Name field from that table in
your result set.

fig. 138

191Appendix I: Data Analysis Checkpoint Questions and Solutions

Solution:
SELECT
 	a.title,
		 t.Name,
		 g.Name
FROM
	 albums a
INNER JOIN
	 tracks t
ON	
	 a.AlbumId = t.TrackId
INNER JOIN
	 genres g
ON
	 g.GenreId = t.GenreId

Chapter 7 Data Analysis Checkpoint

Question 1: Create a single-line mailing list for all US customers, including
capitalized full names and full addresses with five-digit zip codes, in the
following format:

FRANK HARRIS 1600 Amphitheatre Parkway, Mountain View, CA 94043

Solution: The format above is calling for the first and last names to be in all
caps, so we will need the UPPER() function for those two fields. We use the
double pipes to concatenate the rest of the fields, adding spaces and commas
where needed.

SELECT
	 UPPER(FirstName) || ' ' || UPPER(LastName) || ' '
	 || Address || ', ' || City || ', ' || State || ' '
	 || SUBSTR(PostalCode,1,5) AS [MailingAddress]	
FROM 	
	 customers
WHERE
	 Country = 'USA'

192 SQL QUICKSTART GUIDE

Question 2: What are the average annual sales generated by customers from
the USA from all years of data available?

Solution: If we are just looking for an aggregate function for one country, we
can simply select billing country and the average of the total using the WHERE
clause to limit our results to the USA.

SELECT
	 BillingCountry,
	 AVG(Total)
FROM
	 invoices
WHERE
	 BillingCountry = 'USA'

We can use the ROUND() function outside of the AVG() function to
reduce the number of decimal places returned.

Question 3: What are the company’s all-time total sales?

Solution: Since this question is asking us for the sum total of invoices, our
SELECT statement is fairly simple.

fig. 139

fig. 140

193Appendix I: Data Analysis Checkpoint Questions and Solutions

SELECT
	 SUM(Total)
FROM
	 invoices

Question 4: Who are the top ten best customers from a revenue standpoint?
Hint: you will need to use a join (chapter 6) to answer this question.

Solution: We have already found the total revenue. Now we are looking
for the top ten customers responsible for the highest revenue. Since we are
looking for data from one table that corresponds to data from another table in
a one-to-one relationship, we use an inner join.

SELECT
	 SUM(Total)AS [Revenue Total],
	 c.FirstName,
	 c.LastName
FROM
	 invoices i
INNER JOIN
	 customers c
ON
	 i.CustomerId = c.CustomerId
GROUP BY c.CustomerId
ORDER BY SUM(Total) DESC

Chapter 8 Data Analysis Checkpoint

Question 1: How many invoices exceed the average invoice amount generated
in 2010?

Solution: To answer this question we need to accomplish two tasks. First
we need to find the average invoice amount generated in 2010. Secondly, we
need to compare that value with every invoice in our table to see how many
exceeded the average 2010 invoice value.

fig. 141

194 SQL QUICKSTART GUIDE

First let’s write our subquery:

select
	 avg(total)
from
	 invoices
where
	 InvoiceDate between '2010-01-01' and '2010-12-31'

Running this query gives us an average of $5.80; now we need to write the
outer query to select invoices that are greater than the 2010 average.

SELECT
	 InvoiceDate,
	 Total
FROM
	 invoices
WHERE
Total >

(select
	 avg(total)
from
	 invoices
where
	 InvoiceDate between '2010-01-01' and '2010-12-31')
ORDER BY
	 Total DESC

fig. 142

195Appendix I: Data Analysis Checkpoint Questions and Solutions

Our Results Pane tells us that 179 results were returned.

If we only wanted the actual number of invoices returned,
we could modify our Total field in our outer query to say
COUNT(Total).

Question 2: Who are the customers responsible for these invoices?

Solution: This problem requires joins again, to connect customer data from
the customers table to the invoices table. The question itself implies a one-to-
one relationship between the customers table and the invoices table. We have
already selected the invoices we are interested in, so now we need to find the
customers attached to those invoices. This is exactly what an inner join does.
This solution is very similar to the solution to Question 1. All we have added
is the inner join section so we have access to customer names as well.

SELECT
	 i.InvoiceDate,
	 i.Total,
	 c.FirstName,
	 c.LastName
FROM
	 invoices i
INNER JOIN
	 customers c
ON
	 i.CustomerId = c.CustomerId	
WHERE
Total >

(select
	 avg(total)
from
	 invoices
where
	 InvoiceDate between '2010-01-01' and '2010-12-31')
ORDER BY
	 Total DESC

196 SQL QUICKSTART GUIDE

Question 3: How many of these customers are from the USA?

Solution: We can modify the solution to Question 2 above to include an AND
statement at the end of the WHERE clause of the outer query.

SELECT
	 InvoiceDate,
	 Total,
	 BillingCountry
FROM
	 invoices
WHERE
Total >

(select
	 avg(total)
from
	 invoices
where
	 InvoiceDate between '2010-01-01' and '2010-12-31')
AND BillingCountry = 'USA'
ORDER BY
	 Total DESC

Our Results Pane shows us that the query returned forty records.

fig. 143

197Appendix I: Data Analysis Checkpoint Questions and Solutions

We could use a SUM() function around the total if we wanted this
query to return the exact number of results.

Chapter 9 Data Analysis Checkpoint
In this checkpoint we asked you to turn the following query, which compares
average invoice per city against the global average, into a series of views:

SELECT
	 BillingCity,
	 AVG(Total) AS [City Average],
	 (select
		 avg(total)
	 from
		 invoices) AS [Global Average]
FROM
	 invoices
GROUP BY
	 BillingCity
ORDER BY
	 BillingCity

Question 1: Take the inner query (by itself) from this SELECT statement
and create a view from it. Save the view as V_GlobalAverage.

If you have been following along with the in-chapter examples,
you might have already saved an average function as a view. For
this exercise, make sure this new view has a new name.

Solution: We take the inner query by itself and add the view syntax on the
first line.

CREATE VIEW V_GlobalAverage AS
select
	 avg(total)
from
	 invoices AS [Global Average]

Question 2: Remove the subquery from the code above entirely and substitute
it for your newly created view V_GlobalAverage.

198 SQL QUICKSTART GUIDE

Solution: When we use a view in the SELECT clause, we use the asterisk
symbol.

SELECT
	 BillingCity,
	 AVG(Total) AS [City Average],
(select
	 *
from
V_GlobalAverage) AS [Global Average]
FROM
	 invoices
GROUP BY
	 BillingCity
ORDER BY
	 BillingCity

Question 3: Save this new query as a view called V_CityAvgVsGlobalAvg.

Solution: We copy our code from question 2 and add the CREATE VIEW
statement at the very top.

CREATE VIEW V_CityAvgVsGlobalAvg AS
SELECT
	 BillingCity,
	 AVG(Total) AS [City Average],
(select
	 *
from
V_GlobalAverage) AS [Global Average]
FROM
	 invoices
GROUP BY
	 BillingCity
ORDER BY
	 BillingCity

Question 4: Delete the view V_GlobalAverage. What happens to V_
CityAvgVsGlobalAvg?

199Appendix I: Data Analysis Checkpoint Questions and Solutions

Solution: We use DROP VIEW to delete our view. Alternatively, we can right-
click on the view from our Database Structure tab in DB Browser and delete
the view that way.

DROP VIEW V_GlobalAverage

Now to see how this impacts our previous statements, we need to write a
SELECT statement to select our virtual table.

V_CityAvgVsGlobalAvg
SELECT
	 *
FROM
	 V_CityAvgVsGlobalAvg

You should get the following error message:

no such table: main.V_GlobalAverage:

Chapter 10 Data Analysis Checkpoint

Question 1: Add a new customer to the database.

Solution: We first need to add our new customer to the customers table. A
customer can exist alone without being referenced on any other table (if they
didn’t make a purchase yet). To start, insert a record into the customers table.

INSERT INTO
customers
VALUES ('60', 'New', 'Customer', '', '123 Day Street',
'New York', 'NY', 'USA', '11201', '(347) 525-8688', '',
'nc@gmail.com', '1');

We left some of the fields as null by including two single quotes
next to each other. We can check our work by running a SELECT
statement that looks for the name of the customer we just added.

200 SQL QUICKSTART GUIDE

SELECT
*
FROM
customers
WHERE
FirstName = 'New'

If you used a different name for your new customer, modify that
value in the query accordingly.

Question 2: Create an invoice record for this customer.

Solution: In order to create an invoice entry for our new customer, we must
pay special attention to the fields in the invoices table that correspond to our
customers table. For example, our invoices use the same address that appears in
the customers table.

INSERT INTO
invoices
VALUES ('413', '60', '2019-10-04 00:00:00', '123 Day
Street', 'New York', 'NY', 'USA', '10201', '50.00')

Question 3: Remove this customer from the database.

Solution: As we mentioned in chapter 10, it is a best practice to view the data
we are going to delete so that we can see what we will be deleting. In this case,
the data we are deleting stretches across two tables, so we write an INNER
JOIN statement to view all the data we have included.

SELECT
	 c.FirstName,
	 c.LastName,
	 i.Total,
	 i.InvoiceId
FROM
	 invoices i

fig. 144

201Appendix I: Data Analysis Checkpoint Questions and Solutions

INNER JOIN
	 customers c
ON 	 i.CustomerId = c.CustomerId
WHERE c.CustomerId = 60

Now that we have confirmed the data, we can compose the DELETE statement.

DELETE FROM
	 invoices
WHERE CustomerId = 60

DELETE FROM
	 customers
WHERE CustomerId = 60

